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Abstract The localization–delocalization of a particle in a cyclic box is studied by
examination of its Shannon information entropy and standard deviation. These results
are compared to the particle in a box model, in ground and also in excited states. We
show how a cyclic symmetry imposes that the ground state is more delocalized in the
cyclic box as compared to the particle in a box. However, excited states in both models
exhibit the same localization. The differences between the Shannon entropy and the
standard deviation are discussed and the analysis is then extended to consider multiple
particles in both models.

Keywords Localization–delocalization · Shannon information entropy · Cyclic box

1 Introduction

Localization–delocalization phenomena exhibited by quantum systems is an impor-
tant aspect in several fields in chemistry and physics [1–5]. In physics, it is common to
find this kind of phenomena in confined systems where particles are confined in one,
two or three dimensions. A quantum dot is currently one of the most revolutionary
and technologically useful examples of this kind of confined system. In chemistry,
aromatic compounds are those in which many important properties depend on the
delocalization of π electrons [6]. In both cases, the study of localization–delocaliza-
tion phenomena has a very important role in the development of new concepts and
applications.
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The localization (delocalization) inherent in a distribution can be quantified by the
Shannon information entropy [7], taken from information theory [8]. This information
entropy has been applied to the study of atomic and molecular systems [9–17]. It is
defined for continuous variables as

Sx = −
∫

ρ(x) ln ρ(x)dx (1)

where the probability density ρ(x) is defined in terms of the wave function of the
system

ρ(x) = |�(x)|2. (2)

The density is normalized to unity,

∫
ρ(x)dx = 1. (3)

Larger values of the Shannon entropy are indicative of a more delocalized density
while smaller values are associated with localized distributions. Recently, a discrete
Shannon entropy has been used to study aromaticity [18].

The Shannon information entropy can be compared to another measure of the local-
ization, the standard deviation, defined as

�x =
(
〈x2〉 − 〈x〉2

) 1
2
, (4)

and the moments are

〈x2〉 =
∫

ρ(x)x2dx, 〈x〉 =
∫

ρ(x)xdx . (5)

Smaller (larger) values of �x are associated with a more localized (delocalized) dis-
tribution.

The particle in a box or infinite well model (B) with wave functions and energies
in atomic units, for a box length L

�n(x) =
√

2

L
sin

(nπx

L

)
, En = n2π2

2mL2 , n = 1, 2, 3, . . . (6)

has been studied from an information theoretic perspective [19,20]. The dependence
of the Shannon entropy on the quantum number, n, has been analyzed and shown to be
a constant as a function of quantum number. That is, the localization–delocalization
does not vary in ground or excited states [21]. It is dependent on the box length [19,21]
as

SB = ln(L) − (1 − ln 2). (7)
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In contrast, the standard deviation does depend on the quantum number as [20,22]

�xB = L

2
√

3

√
1 − 6

π2n2 . (8)

Thus, �xB increases with quantum number, in contrast to SB , with the interpretation
that excitation induces delocalization. In the limit of very large n, which according to
the correspondence principle is the classical limit, �xB → L

2
√

3
.

These results prompt the question of which is the superior measure of localization,
how are they different, and what would occur if the symmetry of the system were to
change, i.e. if the particle was confined to a ring instead of the box. In which system
would the particle be more delocalized? These models have been applied to chemical
systems where the particle can be used to represent the behavior of a π electron in an
alkene (box) or cyclic conjugated molecule (ring) and go by the name of Free Electron
Molecular Orbital (FEMO) model [23].

The natural coordinates of the particle on a ring [24,25] are polar ones where the
wave functions are dependent on the polar angle, θ , and are given as 1√

2π
eimθ with

m = ±1,±2, . . .. Thus the density is constant, independent of the quantum number
and θ , and yields an entropy of ln 2π . However, our coordinate system must be consis-
tent in the two models, in order to compare results, since the measures are dependent
on the coordinate system that is employed [8].

Wave functions for the ring can be obtained in cartesian coordinates by imposing
the necessary boundary conditions [25,26]. This model is referred to as the cyclic box
(CB). The wave functions and energies are

�k=0(x) =
√

1

L

�+
k (x) =

√
2

L
sin

(
2kπx

L

)
, k = 1, 2, 3, . . .

�−
k (x) =

√
2

L
cos

(
2kπx

L

)
, k = 1, 2, 3, . . .

Ek = (2k)2π2

2mL2 (9)

where k is the quantum number and L is the cyclic box length which is equivalent to
the circumference of the ring. There is degeneracy in this model since �−

k (x),�+
k (x)

yield the same energy.
FEMO [4,23] has been used to discuss the role of the spatial symmetry by defin-

ing a delocalization energy as the difference between the energies of the two models.
Thus, the observed stability of aromatic molecules could be attributed to the stability
of the ground state of the cyclic box as compared to the box. These models have also
been used to discuss Aromaticity/Antiaromaticity in cyclic conjugated hydrocarbons
[24].
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The purpose of this work is to examine the differences in (de)localization of the
probability density, in the two models, from analysis of the Shannon entropies and stan-
dard deviations. Hence, instead of an energetic perspective, we focus on the behavior
of the probability densities which is more directly related to the localization–delocal-
ization concept in quantum mechanics. Atomic units are used throughout.

2 Results and discussion

2.1 Ground state

We begin the study by examining the localization–delocalization in the ground states
of the B and CB models. We plot the respective probability densities as a function of x
in Fig. 1. One can see that the CB ground state density is flat and thus more delocalized
as compared to the B model which exhibits a maximum.

The localization can be quantified by calculating the Shannon entropies and stan-
dard deviations. In the CB model

SC B = ln(L)

�xC B = L

2
√

3
. (10)

These expressions can be compared to and contrasted to those in Eqs. (7) and (8) for
the box with n = 1, corresponding to the ground state. Both the Shannon entropy and
the standard deviation yield that the particle in the box is more localized than in the
cyclic box or equivalently that the particle in the cyclic box is more delocalized than
in the box. Figures 2 and 3 illustrate this as a function of box length, L . One can see
that the curve of cyclic box is always above that of the box. These results illustrate
that the symmetry of the system plays an important role in the delocalization of the
particle.

The difference between Figs. 2 and 3 is that the difference between Shannon entro-
pies in Fig. 2 is constant and independent of L , whereas the difference between the
standard deviations in Fig. 3 is linear with L .

It is also noteworthy that the standard deviation of the ground state in the cyclic
box is the same as that of the classical limit in the box when n is very large.

2.2 Excited states

Figure 4 shows the probability density of the two degenerate excited state CB functions
corresponding to k = 1. The �+

k (x) function has the same form as the B function,
with n = 2k, thus the entropy of this CB function is the same as the B one [Eq. (7)].

One can also verify that degenerate functions, �+
k (x) and �−

k (x), yield the same
value of entropy, equal to that of Eq. (7). This is not the case for the standard devi-
ation. One obtains that the two degenerate functions for the excited states of the
CB model do not yield the same standard deviation. Equation (8) for these states is
generalized to
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Fig. 1 Probability density of the particle in a box (upper curve) and the cyclic box (lower curve) in the
ground state for L = 2

�xC B = L

2
√

3

√
1 ± 3

2π2k2 , (11)

where the + corresponds to the �−
k (x) functions and − to the �+

k (x) functions. Thus
although degenerate, the standard deviation for the �−

k (x) function is larger than that
of the �+

k (x) function. This is a salient difference from the Shannon entropy where
both are equal. We believe that this behavior of the standard deviation stems from
inconsistencies in defining expectation values of x for a periodic system, and is con-
nected to the choice of origin in the coordinate system. For example, the sin [�+

k (x)]
and cos [�−

k (x)] functions in Fig. 4 are phase-shifted. An in-depth analysis of this
effect will be presented elsewhere.
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Fig. 2 Shannon entropy for the particle in a box (circles) and a cyclic box (squares) in their ground states
as a function of box length, L
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Fig. 3 Standard deviation values for the particle in a box (circles) and a cyclic box (squares) in their ground
states as a function of box length, L

Comparing the first excited state of the CB model (k = 1) to that of the B model
(n = 2), with the same L , one observes that their Shannon entropies are equal, i.e. they
are equally (de)localized. The reason for this is that Eq. (7) does not depend on the
quantum number. This is also true for the second, third, …, excited states. A striking
observation is that the differences in localization between the two models previously
seen in the ground state, is lost when one examines excited states.
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Fig. 4 Probability density of the degenerate first excited states of the cyclic box, �−
1 (x) (upper curve),

�+
1 (x) (lower curve), with L = 2

Analogously, the standard deviation of the CB model for �+
k (x) can be compared to

the B model with the use of Eqs. (8) and (11). In the first excited state of the box, n = 2
while in the cyclic box, k = 1. Thus both models yield the same standard deviation
in these states. The interpretation in this case is consistent with that obtained from the
Shannon entropy, i.e. both models in the first excited state are equally (de)localized.

This behavior is also examined in other excited states. For n > 2 and k > 1, Eqs. (8)
and (11) show that the CB particle is more delocalized than the B particle in these
states, similar to the ground state. This also holds for the �−

k (x) functions (and in
the first excited state). Thus, there are differences in interpretation according to which
measure one employs.

The differences in the measures can be summarized and clarified by examining the
(second) excited state densities for both models in Fig. 5 for n = 3 in the box and
k = 2 (effective quantum number 4) in the cyclic box. One notes that the nodal struc-
ture in the CB model is more pronounced. However, independent of this, the Shannon
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Fig. 5 Probability density for states n = 3 in the box (upper curve) and k = 2 in the cyclic box (lower
curve), with L = 2

entropy quantifies the (de)localization to be equal in both models while the standard
deviation yields that the CB model is more delocalized.

Examination of the energy expressions in Eqs. (6) and (9) show that the energies of
the two models are equal in the first excited state, in contrast to the ground state where
the lower energy of the C B model was argued to be due to delocalization. Hence the
arguments and interpretation for the energy, Shannon entropy and standard deviation
are congruent. That is, there is no difference between the B and CB models in the first
excited state. For other excited states the B model energies are lower than the CB model.

2.3 Momentum space

In this section we will explore the momentum space formulation of the particle in
a cyclic box since the momentum space Shannon entropy has been studied for the
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particle in a box [19,20]. To our knowledge, the cyclic box in momentum space
has not been previously studied or applied to study chemical systems. The Shannon
entropies in position and in momentum space together define an entropic uncertainty
relation [27]

St = Sx + Sp ≥ 1 + ln π, (12)

where the momentum space Shannon entropy is defined as

Sp = −
∫

π(p) ln π(p)dp (13)

and π(p) is the momentum space density. This density is defined in terms of the wave
function in momentum space as

π(p) = |ϕ(p)|2. (14)

The wave function in momentum space is connected to that in position space by the
Dirac-Fourier transform

ϕ(p) = 1√
2π

L∫

0

�(x)e−i px dx . (15)

Using the above expression, we transformed the functions given in Eq. (9) to,

ϕk=0(p) = i(e−i pL − 1)

p
√

2π L

ϕ+
k (p) = 2k

√
π L

[
cos(pL) − i sin(pL) − 1

(pL)2 − (2πk)2

]

ϕ−
k (p) = i pL

3
2√

π

[
cos(pL) − i sin(pL) − 1

(pL)2 − (2πk)2

]
. (16)

The 〈p2〉 expectation value gives twice the kinetic energy which in this case is twice
the total energy. Calculating 〈p2〉 using the above functions,

〈p2〉 =
∞∫

−∞
p2|ϕ(p)|2dp, (17)

one finds that the ϕk=0 and ϕ−
k functions do not correctly reproduce the energy, while

the ϕ+
k function does give the correct energy. Thus, the ϕk=0 and ϕ−

k functions are
not valid representations in momentum space even though they are the transforms of
the position space functions. Their common trait in position space is that they do not

123



242 J Math Chem (2012) 50:233–248

S

2.2

2.4

2.6

2.8

3

3.2

2.2

2.4

2.6

2.8

3

3.2

k
0 2 4 6 8 10 12

0 2 4 6 8 10 12

Fig. 6 Sp (circles) and St (squares) of the cyclic box as a function of quantum number with L = 2

vanish at the boundaries of the cyclic box, in contrast to the ϕ+
k function which does

vanish.
Sp, calculated from the ϕ+

k (p) functions via numerical integration, is shown in
Fig. 6 along with St . Sp increases with quantum number, in sharp contrast to position
space where Sx is constant. Thus, the behavior of St is governed by Sp. The behavior
of Sp with quantum number in the cyclic box mimics that of the particle in a box
[19,20]. Hence, the momentum density in the cyclic box is more delocalized than the
box in corresponding (first, second, third, …) excited states.

Figure 7 shows the variation of Sx , Sp and St with L . Sp decreases, or the momen-
tum density localizes, while Sx increases. Note that St is a constant and its value is
above that of the bound established in Eq. (12). This bound also holds for St in Fig. 6.

The standard deviation of the momentum density,

�p =
(
〈p2〉 − 〈p〉2

) 1
2 = √

2Ek = 2kπ

L
, (18)

is related to the energy since 〈p〉 = 0. From Eq. (18), one sees that �p grows linearly
with quantum number k. This differs from the behavior of Sp in Fig. 6 where Sp

approaches an asymptotic value. This difference has been previously discussed in the
box (B) model [19].

2.4 Multiple particles

We now focus the attention on the behavior of the two models in position space but
now with multiple particles. The wave functions of a system of N non-interacting
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Fig. 7 Sp (circles), Sx (squares) and St (diamonds) of the cyclic box as a function of box length, L , for
k = 1

and indistinguishable particles for these models are (anti)symmetrized products of the
one-particle functions (orbitals)

	B(x1, x2, . . . , xN ) = 1√
N ! |�n1(x1)�n2(x2), . . . , �nN (xN )|


C B(x1, x2, . . . , xN ) = 1√
N ! |�k1(x1)�k2(x2), . . . , �k N (xN )|. (19)

The one-particle density is obtained by integration over N − 1 variables

ρB(x) =
∫

|	B(x1, x2, . . . , xN )|2dx2 . . . dxN

ρC B(x) =
∫

|
C B(x1, x2, . . . , xN )|2dx2 . . . dxN (20)

which gives

ρB(x) = 1

N

∑
n

|�n(x)|2

ρC B(x) = 1

N

∑
k

|�k(x)|2, (21)

where the subscript under x1 has been dropped to reflect the indistinguishability of
particles.

Electron spin is introduced into the models by allowing for double occupancy
of the orbitals and hence respecting the Pauli exclusion principle. The densities are
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Fig. 8 Shannon entropy of the box (circles) and cyclic box (squares) with multiple particles and L = 2

normalized to unity and the entropies were obtained via numerical integration. Hund’s
rule was used in the orbital filling of the cyclic box. For example, ground state densities
of the cyclic box are [26]

ρ2
C B(x) = 1

2
(2|�0(x)|2)

ρ3
C B(x) = 1

3

(
2|�0(x)|2 + |�±

1 (x)|2
)

ρ4
C B(x) = 1

4

(
2|�0(x)|2 + |�+

1 (x)|2 + |�−
1 (x)|2

)
(22)

while in the box

ρ2
B(x) = 1

2
(2|�1(x)|2)

ρ3
B(x) = 1

3
(2|�1(x)|2 + |�2(x)|2)

ρ4
B(x) = 1

4
(2|�1(x)|2 + 2|�2(x)|2), (23)

where the superscript corresponds to the number of particles. It should be emphasized
that although the particles are non-interacting, there is a pseudo force between them
due to the antisymmetry of the wave function and respect of the Pauli principle.

Figure 8 shows the behavior of the entropies of the two models as a function of
N . First, SC B > SB , that is the cyclic box is always more delocalized than the box,
independent of the number of particles. This reaffirms the previous result for the
one-particle ground state.
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Fig. 9 Probability density of the cyclic box with L = 2 for N = 2 − 7, (a)–(f)

Second, the density of the box delocalizes with N , i.e. the entropy increases. The
interpretation of this is that the pseudo force between particles causes them to avoid
each other which results in a delocalization of the density.

On the other hand, the entropy of the cyclic box remains virtually the same, local-
izing slightly for an odd number of particles. That is, the density localizes and the
entropy decreases when a new orbital is filled. We present in Fig. 9 plots of the densi-
ties for different particle number where one can observe how adding a particle changes
the structure of the probability density. The oscillations in the entropy of the cyclic
box decrease for larger N , and are not present in the box model. Also, the effect of
the pseudo repulsion with N is greater in the box than in the cyclic box.

As N increases, the entropies of the two models tend to one another, and it is plau-
sible to believe that they would be equal in the asymptotic limit of very large N . In
this limit which one can consider as classical (uniform distribution of particles), the
density would be constant and written as

ρc(x) = N

L
. (24)
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Fig. 10 Standard deviation of the box (circles) and cyclic box (squares) with multiple particles and L = 2

Such a density when normalized to unity gives 1
L , and yields an entropy of ln(L),

which are the same as those in the ground state of the particle in a cyclic box. The
important point here is that in the limit of very large N , both models exhibit the same
(de)localization as measured by the entropies.

The behavior of the standard deviation is given in Fig. 10 and is similar to that
of the Shannon entropy. Thus the previous arguments and interpretations hold in the
analysis of multiple particles. In the limit of large N , one can use the expression for
the density in Eq. (24) to calculate the standard deviation, which gives L

2
√

3
, and is the

same as the standard deviation of the particle in a cyclic box in its ground state.
The energies of the models as a function of N , calculated by using orbital filling and

the respective expressions in Eqs. (6) and (9), are presented in Fig. 11. One observes
that the energy of the CB model is always below that of the B model, independent of
the number of particles. Note that this is different from the one-particle case where
the B model has a lower energy for higher excited states. The added stability of the
CB model can be justified by the larger delocalization of its probability density, seen
in the Shannon entropy and standard deviation.

3 Conclusions

Shannon information entropies and standard deviations are used to quantify, com-
pare and contrast the localization of the probability density of the particle in a cyclic
box with that of a one-dimensional box. In the ground state, the particle in a cyclic
box is more delocalized than in the one-dimensional box. In excited states, the situa-
tion is different since there is an equal (de)localization of the particles in both mod-
els according to the Shannon entropy analysis. This result is in agreement with the
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Fig. 11 Energies of the box (circles) and cyclic box (squares) models in units of π2

2mL2
as a function of number of particles

standard deviation analysis in the first excited states. In other excited states, the stan-
dard deviation gives that the cyclic box model is more delocalized than the one-dimen-
sional box, similar to ground state results. Analysis of the ground states corresponding
to multiple particles in these models show that the cyclic box density is more delocal-
ized than the one-dimensional box with the differences decreasing as the number of
particles is increased. Thus independent of the number of (non-interacting) particles,
the cyclic box is more delocalized than the one-dimensional box. The cyclic box in
momentum space is also discussed.
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